Glutamate controls growth rate and branching of dopaminergic axons.
نویسندگان
چکیده
Dopamine-releasing neurons of the substantia nigra pars compacta produce an extraordinarily dense and expansive plexus of innervation in the striatum converging with glutamatergic corticostriatal and thalamostriatal axon terminals at dendritic spines of medium spiny neurons. Here, we investigated whether glutamatergic signaling promotes arborization and growth of dopaminergic axons. In postnatal ventral midbrain cultures, dopaminergic axons rapidly responded to glutamate stimulation with accelerated growth and growth cone splitting when NMDA and AMPA/kainate receptors were activated. In contrast, when AMPA/kainate receptors were selectively activated, axon growth rate was decreased. To address whether this switch in axonal growth response was mediated by distinct calcium signals, we used calcium imaging. Combined NMDA and AMPA/kainate receptor activation elicited calcium signals in axonal growth cones that were mediated by calcium influx through L-type voltage-gated calcium channels and ryanodine receptor-induced calcium release from intracellular stores. AMPA/kainate receptor activation alone elicited calcium signals that were solely attributable to calcium influx through L-type calcium channels. We found that inhibitors of calcium/calmodulin-dependent protein kinases prevented the NMDA receptor-dependent axonal growth acceleration, whereas AMPA/kainate-induced axonal growth decrease was blocked by inhibitors of calcineurin and by increased cAMP levels. Our data suggest that the balance between NMDA and AMPA/kainate receptor activation regulates the axonal arborization pattern of dopamine axons through the activation of competing calcium-dependent signaling pathways. Understanding the mechanisms of dopaminergic axonal arborization is essential to the development of treatments that aim to restore dopaminergic innervation in Parkinson's disease.
منابع مشابه
Dopaminergic axons in different divisions of the adult rat striatal complex do not express vesicular glutamate transporters.
Midbrain dopamine neurons signal rapid information about rewards and reward-related events. It has been suggested that this fast signal may, in fact, be conveyed by co-released glutamate. Evidence that dopamine neurons co-release glutamate comes largely from studies involving cultured neurons or tissue from young animals. Recently, however, it has been shown that this dual glutamatergic/dopamin...
متن کاملActivity dependence of cortical axon branch formation: a morphological and electrophysiological study using organotypic slice cultures.
The influence of neuronal activity on cortical axon branching was studied by imaging axons of layer 2/3 neurons in organotypic slice cultures of rat visual cortex. Upper layer neurons labeled by electroporation of plasmid encoding yellow fluorescent protein were observed by confocal microscopy. Time-lapse observation of single-labeled axons showed that axons started to branch after 8-10 d in vi...
متن کاملRole of RhoA in activity-dependent cortical axon branching.
During development, axon branching is influenced by sensory-evoked and spontaneous neural activity. We studied the molecular mechanism that underlies activity-dependent branch formation at horizontally elongating axons (horizontal axons) in the upper cortical layers, focusing on Rho family small GTPases. Axonal labeling with enhanced yellow fluorescent protein showed that horizontal axons forme...
متن کاملEphrins regulate the formation of terminal axonal arbors during the development of thalamocortical projections.
The development of connections between thalamic afferents and their cortical target cells occurs in a highly precise manner. Thalamic axons enter the cortex through deep cortical layers, then stop their growth in layer 4 and elaborate terminal arbors specifically within this layer. The mechanisms that underlie target layer recognition for thalamocortical projections are not known. We compared t...
متن کاملAgrin differentially regulates the rates of axonal and dendritic elongation in cultured hippocampal neurons.
In the present study, we examined the role of agrin in axonal and dendritic elongation in central neurons. Dissociated hippocampal neurons were grown in the presence of either recombinant agrin or antisense oligonucleotides designed to block agrin expression. Our results indicate that agrin differentially regulates axonal and dendritic growth. Recombinant agrin decreased the rate of elongation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 38 شماره
صفحات -
تاریخ انتشار 2009